Autonomous right-screw rotation of growth cone filopodia drives neurite turning

نویسندگان

  • Atsushi Tamada
  • Satoshi Kawase
  • Fujio Murakami
  • Hiroyuki Kamiguchi
چکیده

The direction of neurite elongation is controlled by various environmental cues. However, it has been reported that even in the absence of any extrinsic directional signals, neurites turn clockwise on two-dimensional substrates. In this study, we have discovered autonomous rotational motility of the growth cone, which provides a cellular basis for inherent neurite turning. We have developed a technique for monitoring three-dimensional motility of growth cone filopodia and demonstrate that an individual filopodium rotates on its own longitudinal axis in the right-screw direction from the viewpoint of the growth cone body. We also show that the filopodial rotation involves myosins Va and Vb and may be driven by their spiral interactions with filamentous actin. Furthermore, we provide evidence that the unidirectional rotation of filopodia causes deflected neurite elongation, most likely via asymmetric positioning of the filopodia onto the substrate. Although the growth cone itself has been regarded as functionally symmetric, our study reveals the asymmetric nature of growth cone motility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient.

Pathfinding of growing neurites depends on turning of the growth cone in response to extracellular cues. Motile filopodia of the growth cone are known to be critical for mediating contact-dependent guidance of the growth cone. However, whether filopodia also play an essential role in growth cone turning response induced by a diffusible chemotropic substance is unclear. Growth cones of cultured ...

متن کامل

Filopodial calcium transients promote substrate-dependent growth cone turning.

Filopodia that extend from neuronal growth cones sample the environment for extracellular guidance cues, but the signals they transmit to growth cones are unknown. Filopodia were observed generating localized transient elevations of intracellular calcium ([Ca2+]i) that propagate back to the growth cone and stimulate global Ca2+ elevations. The frequency of filopodial Ca2+ transients was substra...

متن کامل

Filopodial Calcium Transients Regulate Growth Cone Motility and Guidance through Local Activation of Calpain

Spontaneous intracellular calcium ([Ca2+](i)) transients in growth cone filopodia reduce filopodial motility, slow neurite outgrowth, and promote turning when generated asymmetrically; however, the downstream effectors of these Ca2+ -dependent behaviors are unknown. We report that Ca2+ transients in filopodia activate the intracellular protease calpain, which slows neurite outgrowth and promote...

متن کامل

Micropruning: the mechanism of turning of Aplysia growth cones at substrate borders in vitro.

Growth cones of Aplysia californica neurons were observed with video-enhanced contrast-differential interference contrast (VEC-DIC) microscopy as they turned at a border between poly-L-lysine-treated and untreated glass. Growth cones that turned generally developed 2 distinct active areas of filopodial and veil formation, much in the way of growth cones undergoing branching. Both active areas a...

متن کامل

Two Distinct Filopodia Populations at the Growth Cone Allow to Sense Nanotopographical Extracellular Matrix Cues to Guide Neurite Outgrowth

BACKGROUND The process of neurite outgrowth is the initial step in producing the neuronal processes that wire the brain. Current models about neurite outgrowth have been derived from classic two-dimensional (2D) cell culture systems, which do not recapitulate the topographical cues that are present in the extracellular matrix (ECM) in vivo. Here, we explore how ECM nanotopography influences neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 188  شماره 

صفحات  -

تاریخ انتشار 2010